Polynomial Long Division: (4x^3 - 3x^2 - 2x + 1) / (x + 1)
This article will guide you through the process of dividing the polynomial 4x^3 - 3x^2 - 2x + 1 by the binomial x + 1 using polynomial long division.
Step 1: Set up the Division
Write the division problem as you would with regular long division, with the dividend (4x^3 - 3x^2 - 2x + 1) inside the division symbol and the divisor (x + 1) outside.
________
x + 1 | 4x^3 - 3x^2 - 2x + 1
Step 2: Divide the Leading Terms
Divide the leading term of the dividend (4x^3) by the leading term of the divisor (x). This gives us 4x^2. Write this term above the division symbol.
4x^2 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
Step 3: Multiply the Quotient by the Divisor
Multiply the quotient (4x^2) by the divisor (x + 1). This gives us 4x^3 + 4x^2. Write this result under the dividend, aligning terms with matching powers.
4x^2 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
Step 4: Subtract
Subtract the result from the previous step (4x^3 + 4x^2) from the dividend. This gives us -7x^2 - 2x.
4x^2 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x
Step 5: Bring Down the Next Term
Bring down the next term from the dividend (-2x).
4x^2 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x + 1
Step 6: Repeat Steps 2-5
Repeat steps 2-5 with the new polynomial (-7x^2 - 2x + 1). Divide the leading term (-7x^2) by the leading term of the divisor (x), which gives us -7x. Write this term next to 4x^2 in the quotient.
4x^2 - 7x _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x + 1
-7x^2 - 7x
Subtract to get 5x + 1. Bring down the next term (1).
4x^2 - 7x _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x + 1
-7x^2 - 7x
----------
5x + 1
Repeat the process. Divide 5x by x to get 5.
4x^2 - 7x + 5 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x + 1
-7x^2 - 7x
----------
5x + 1
5x + 5
Subtract to get -4.
4x^2 - 7x + 5 _______
x + 1 | 4x^3 - 3x^2 - 2x + 1
4x^3 + 4x^2
-----------
-7x^2 - 2x + 1
-7x^2 - 7x
----------
5x + 1
5x + 5
-------
-4
Step 7: Write the Result
The quotient is 4x^2 - 7x + 5 and the remainder is -4. We can express the result as:
(4x^3 - 3x^2 - 2x + 1) / (x + 1) = 4x^2 - 7x + 5 - 4/(x + 1)
Therefore, the division of (4x^3 - 3x^2 - 2x + 1) by (x + 1) results in a quotient of 4x^2 - 7x + 5 and a remainder of -4.